

Tutorial Series

Rolling Bearing Calculation - Starter Essential Operation – Settings – Results

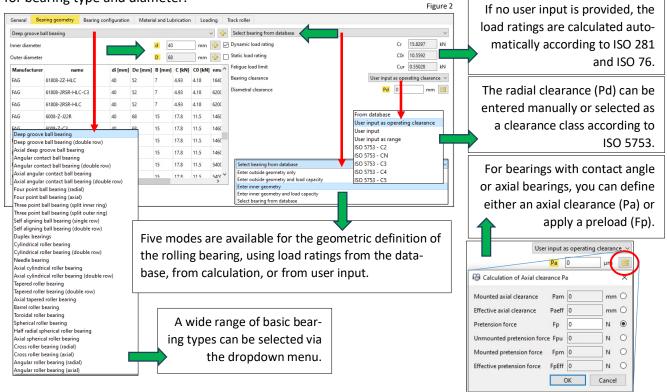
Content

This tutorial provides a practical introduction to the key functions of the MESYS Rolling Bearing Calculation software. The goal is to help new users quickly become familiar with the core features and typical workflows. The version used in this guide is MESYS 12-2024.

General

Please refer to the corresponding section of the online manual for detailed information on the settings under the "General" tab.

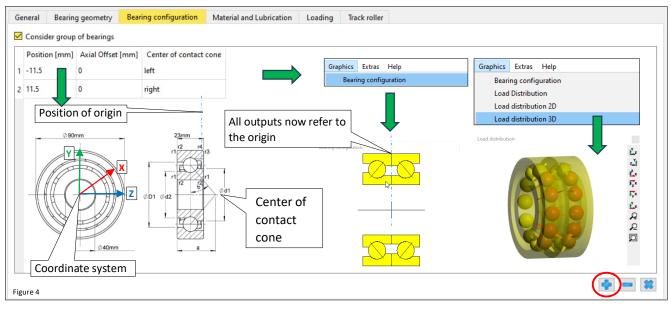
For the purposes of this tutorial, keep the default settings after launching the rolling bearing calculation module.



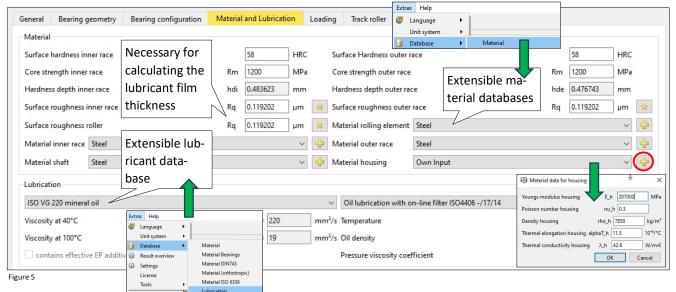
Conclusion, Key Takeaway Call to Actions

General Bearing geometry Bearing configuration	Material and Lubrication	on Loa	iding T	rack roller	
			Rolli	ing Bearing Calculation	
Project name					
Calculation description					
Settings					
Reliability	S	90	%	Calculation for medium clearance	~
Limit for alSO	alSOMax	50		Rolling element has maximum temperature	~
Friction coefficient	μ	0.1		First rolling element on y-axis	~ ±
Calculate lubricant film thickness				Gyroscopic moment is not considered	~
Consider centrifugal force				Rolling element set life is not calculated	~
Consider temperature gradient in fits				Elastic ring expansion is not considered	~
Oscillating bearing				Use load spectrum	
Calculate required hardness depth				Calculate modified life	
Use fatigue strength for hardness depth				Use extended method for pressure distribution	
Required subsurface safety	Ssmin	1		Calculate static safety factor based on stress	Figure 1

Bearing geometry


Here you have the option to select a rolling bearing directly from the software's internal database, using filters for bearing type and diameter.

Engineering Consulting Software	into@mesys.cn	Options for selected bearin	a type Additional
General Bearing geometry Bearing configuration Deep groove ball bearing	Material and Lubrication Loading Task-roller	Cr 20.3215 kN	Inputs
Inner diameter Outer diameter Width Number of rolling elements	0 68 mm § Static load rating 0 68 mm Fatigue load firmit 15 mm Fatigue load firmit 2 16 § Bearing clearance	Cr 20.3215 KN Classify for C0r 15.3359 kN Classify for Cur 0.800408 kN Classify for Close Classify for Classify for ISO 5753 - CN V Classify for Pd 0.013 mm	hybrid bearings
Diameter of rolling elements Pitch diameter Conformity inner ring Conformity outer ring Shoulder diameter inner ring	Dpw 54 mm Bearing tolerance fi 0.52 Fit to shaft fe 0.52 Surface roughness shaft dSi 50.825 mm fit in er diameter Fit to housing	ISO 492 - PO Permissible ellipse length ratio K6 Image: Constraint of truncation Rz Image: Constraint of truncation dsi Image: Constraint of truncation H17 Image: Constraint of truncation	n pmin(eLR) 1 MPa truncation cTr 1.8 of small conformity
Shoulder diameter outer ring	dSe 57.175 mm Surface roughness housing Housing outer diameter Clearance & Tolera		oad rating f_limC0r 0.515 µfit 0.1 use of hardness according to Harris ~ OK Cancel Figure 3


Bearing configuration

A generic angular contact ball bearing 7308B is to be paired or considered as a double-row bearing of the same type:

Select the generic 7308B and activate 'Consider bearing set'. Define the Positions and orientations of contact cone Centers by adding rows using the button $rac{1}{4}$, as shown in Figure 4.

Material and Lubrication

Loading

For each coordinate direction, either a force or a displacement (ux) can be specified as needed (see Figure 6). If the ring used to apply preload on our angular contact bearing is assumed to be fixed, the axial displacement (ux) can be set to zero, and the resulting reaction force in the axial direction (Fx) will be calculated.

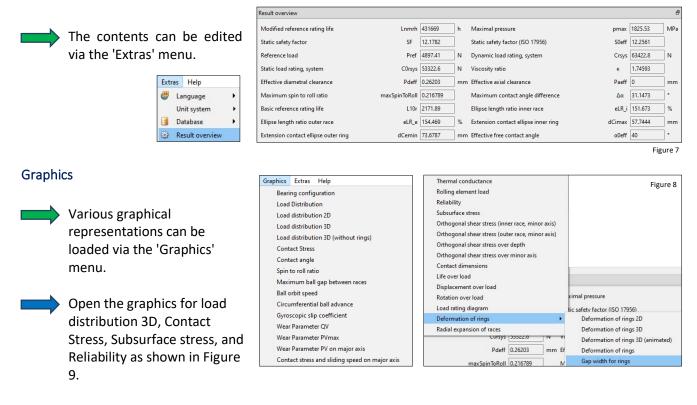
A moment load or a tilt can only be defined in two directions, since rotation around the bearing axis (X) cannot be constrained.

General	Bearing geometry	Bearing configuration	Material and L	ubrication	Loadi	ng Track roller				F	igure (
Axial loa	d		Fx	100	Ν	Displacement		ux	0.34088	μm	0
Radial lo	ad		Fy	0	N	Displacement	γ	uy	0	mm	0
Radial lo	ad		Fz	5000	Ν	Displacement	Load or displacement	uz	0.0267872	mm	0
Moment			My	3.52404	Nm	O Rotation angle		_ _{ry}	0	mrac	۲
Moment			Mz	0	Nm	O Rotation angle		rz	0	mrac	۲
Speed in	ner ring		ni	550	rpm	Inner ring rotates to	load				
Speed ou	iter ring		ne	0	rpm	Outer ring rotates to	load				
Temperat	ture inner ring		Ti	20	°C	Temperature outer ring		Te	20	°C	

Calculation

The calculation can be started using the 🚯 button, the F5 key, or the correspon-

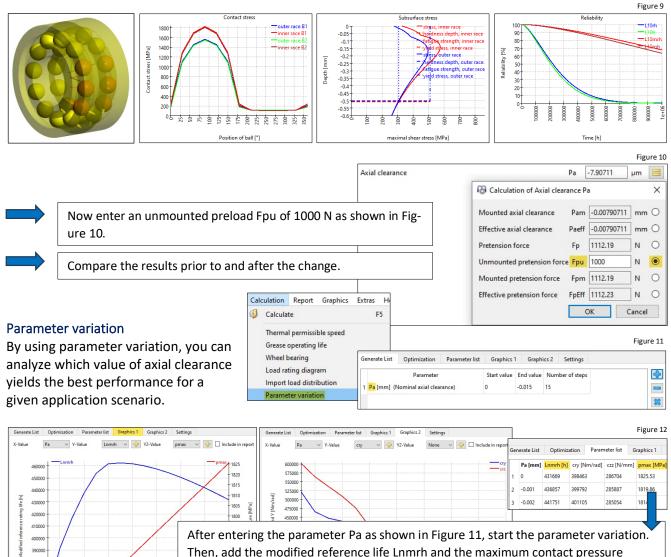
Please always check the icon in the bottom right corner, which confirms that the calculation has been executed and is up to date.

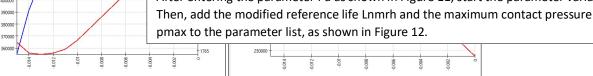

Apply the loads as shown in Figure 6 and start the calculation with an axial clearance Pa = 0 mm.

Axial clearance	Pa	0	μm
-----------------	----	---	----

Results

Result overview


This overview provides various details about the bearing condition at the bottom of the user interface.



Н

F5

Deactivate the checkbox for 'Consider bearing set' (see Figure 4).

General Bearing geometry	Bearing configuration Mat	terial and Lubrication	Loading Track roller			Bild 14
Axial load		Fx 5000	N		ux	10.1171 μm O
Radial load	Assign the val-	Fy 0	N	Run the calcu-	uy	0.0265106 mm O
Radial load	ues under	Fz 4500	N		uz	0.029306 mm ()
Moment	'Loading' ac-	My 119.302	Nm O Rotation angle	lation: 🚱	ry	0 mrad 🖲
Moment	cording to Fig-	Mz 9.06963	Nm O Rotation angle		rz	1 mrad 🖲
Speed inner ring	ure 14.	ni 1500	rpm 🗹 Inner ring rotates to load			
Speed outer ring		ne 0	rpm 🗌 Outer ring rotates to load			
Temperature inner ring		Ti 20	°C Temperature outer ring		Те	20 °C

Nominal axial clearance [mm]

Drag the graphics to the lower area next to the results overview, as shown in Figure 15.

Figure 13

Result overview 5	Spin to roll ratio 🗗 🗙	Life over load 🗗 🗙	Load Distribution 🗗 🗙	Contact angle 🗗 🗙
Modified reference rating life Lnmrh 90067.3 h Maximal pressure pmax 2146.22 MPa Static safety factor SF 7.49423	0.4 0.3 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Life over load 100%: $F_x = 5kN F_y = 0kN F_z = 4$ 1e+07 1e+06	6000	Contact angle outer race outer race
Static safety factor (ISO 17956) S0eff 7.52085 Reference load Pref 4319.36 N	Position of ball [*]		outer reco	Contact 550 550 550 550 550 550 550 550 550 55
Viscosity ratio K 3.59395	Spin to roll ratio Messages	Loading [%]		Position of ball [*]
Figure 15				М 🛃

Modify the inputs under 'Loads' and observe the changes in the graphics.

Activate the load spectrum and check the corresponding box under the 'General' tab (see Figure 1).

Enter a load spectrum as shown in Figure 16 by adding entries using the button.

	-		-	-	_		
Results for No	1	*	4		22	-	

Ge	ene	eral Bea	ring geo	metry	Bearin	ng configur	ation N	Aaterial an	d Lubricati	on L	oading	Track roll
[_	Frequency	Fx [N]	Fy [N]	Fz [N]	ry [mrad]	rz [mrad]	ni (rpm)	ne [rpm]	T i [°C]	T e [°C]	TOil [°C]
	1	0.333333	5000	0		0	1	1500	0	20	20	70
	2	0.333333	5500	0	5000	0	1	1600	0	22	20	70
	3	0.333333	6000	0	5500	0	1	1700	0	24	20	70
											F	igure 16

Compare the results in the results overview and in the graphics for the three load spectrum elements.

MESYS wishes you an instructive and profitable experience with our tutorials. If you have any queries, suggestions or questions, please do not hesitate to contact <u>info@mesys.ch</u>.